Revision Gravimetric Analysis

Name:

 Salt is to be mined from a geological deposit of sedimentary rock. A small sample of the rock was supplied and tested for the percentage of salt, by mass, contained in the sample.
A silver nitrate solution was used to precipitate the chloride ions found in a

A silver nitrate solution was used to precipitate the chloride ions found in a 4.50g sample of the rock .

a) Write a chemical equation for the precipitation reaction.

 $Ag^{+}(aq) + C\Gamma(aq) => AgCI(s)$

b) If the sample was found to contain 61.2% chloride, by mass, what was the mass of the precipitate obtained from the investigation?

Step 1 find the mass of C Γ in the sample. 4.50 X 0.612 = 2.754 g

Step 2 find the mol of Cl $2.754 / 35.5 = 7.76 \times 10^{-2}$

Step 3 find the mol of AgCl $n_{Cl} = n_{AgCl} = 7.76 \times 10^{-2}$

Step 4 find the mass of the precipitate

Mass = mol X formula mass $_{AgCl}$ = 7.76 X 10⁻² X 143.4 = 11.1 g

2) A rock contains an ore of aluminium sulphate (Al₂(SO₄)₃). A 3.480 g sample of the ore is crushed and the sulphate precipitated as barium sulphate BaSO₄(s). If 2.65 g of barium sulphate is obtained what is the percentage by mass of sulphur in the ore given to the right number of significant figures?

Step 1 find the mol of barium sulphate $n_{barium \ sulphate} = 2.65 / 233.4 = 1.14 \times 10^{-2}$ Step 2 find the mol of sulphur $n_{barium \ sulphate} = n_{sulphur} = 1.14 \times 10^{-2}$ Step 3 find the mass of sulphur $Mass_{(sulphur)} = 1.14 \times 10^{-2} \times 32.1 = 0.366g$ Step 4 find the percentage by mass of sulphur in the ore $(0.366 / 3.48) \times 100 = 10.5\%$